AIEEE-CBSE-ENG-03

1. A function f from the set of natural numbers to integers defined by

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$$

(A) one-one but not onto

- (B) onto but not one-one
- (C) one-one and onto both
- (D) neither one-one nor onto

2. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex. Further, assume that the origin, z_1 and z_2 form an equilateral triangle, then

(A) $a^2 = b$

(B) $a^2 = 2b$

(C) $a^2 = 3b$

(D) $a^2 = 4b$

3. If z and ω are two non–zero complex numbers such that $|z\omega|=1$, and Arg (z) – Arg (ω) = $\frac{\pi}{2}$,

then \overline{z}_{ω} is equal to

(A) 1

(B) - 1

(C) i

(D) - i

4. If $\left(\frac{1+i}{1-i}\right)^x = 1$, then

- (A) x = 4n, where n is any positive integer
- (B) x = 2n, where n is any positive integer
- (C) x = 4n + 1, where n is any positive integer
- (D) x = 2n + 1, where n is any positive integer

5. If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and vectors (1, a, a^2) (1, b, b^2) and (1, c, c^2) are non-coplanar, then the

product abc equals

(A) 2

(B) - 1

(C) 1

(D) 0

6. If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

(A) are in A. P.

(B) are in G.P.

(C) are in H.P.

(D) satisfy a + 2b + 3c = 0

7. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in

(A) arithmetic progression

(B) geometric progression

(C) harmonic progression

(D) arithmetic–geometric–progression

8. The number of real solutions of the equation $x^2 - 3|x| + 2 = 0$ is

(A) 2

(B) 4

(C) 1

(D) 3

9.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3) x^2 + (3a - 1) x + 2 = 0$ is twice as large as the other, is		
		$(B) - \frac{2}{3}$	
	(A) $\frac{2}{3}$ (C) $\frac{1}{3}$	(D) $-\frac{1}{3}$	
I10.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then		
	(A) $\alpha = a^2 + b^2$, $\beta = ab$ (C) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$	(B) $\alpha = a^2 + b^2$, $\beta = 2ab$ (D) $\alpha = 2ab$, $\beta = a^2 + b^2$	
11.	A student is to answer 10 out of 13 question least 4 from the first five questions. The number (A) 140 (C) 280	ns in an examination such that he must choose at mber of choices available to him is (B) 196 (D) 346	
12.	The number of ways in which 6 men and women are to sit together is given by (A) $6! \times 5!$ (C) $5! \times 4!$	d 5 women can dine at a round table if no two (B) 30 (D) $7! \times 5!$	
13.	If 1, ω , ω^2 are the cube roots of unity, then $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ is equal to		
	(A) 0 (C) ω	(B) 1 (D) ω ²	
14.	If ${}^{n}C_{r}$ denotes the number of combinations of n things taken r at a time, then the expression ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$ equals		
	$(A)^{n+2}C_r$ $(C)^{n+1}C_r$	(B) $^{n+2}C_{r+1}$ (D) $^{n+1}C_{r+1}$	
15.	The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is (A) 32 (B) 33		
	(C) 34	(D) 35	
16.	If x is positive, the first negative term in the (A) 7 th term (C) 8 th term	expansion of $(1 + x)^{27/5}$ is (B) 5^{th} term (D) 6^{th} term	
17.	The sum of the series $\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} - \dots$ upto ∞ is equal to		
	(A) 2 log _e 2	(B) $\log_2 2 - 1$	
	(C) log _e 2	(D) $\log_{e}\left(\frac{4}{e}\right)$	
18.	Let f (x) be a polynomial function of seconthen f' (a), f' (b) and f' (c) are in (A) A.P. (C) H. P.	d degree. If f (1) = f (-1) and a, b, c are in A. P., (B) G.P. (D) arithmetic–geometric progression	

9.



27. If f (x) = xⁿ, then the value of f (1)
$$-\frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + ... + \frac{(-1)^n f^n(1)}{n!}$$
 is

(A) 2ⁿ
(B) 2ⁿ⁻¹
(C) 0
(D) 1

- 28. Domain of definition of the function $f(x) = \frac{3}{4 x^2} + \log_{10}(x^3 x)$, is

 (A) (1, 2) (B) (-1, 0) \cup (1, 2)
 - (A) (1, 2) (B) $(-1, 0) \cup (1, 2)$ (C) $(1, 2) \cup (2, \infty)$ (D) $(-1, 0) \cup (1, 2) \cup (2, \infty)$
- 29. $\lim_{x \to \pi/2} \frac{\left[1 \tan\left(\frac{x}{2}\right)\right] \left[1 \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi 2x\right]^3}$ is $(A) \frac{1}{8}$ (B) 0
 - (C) $\frac{1}{32}$ (D) ∞
- 30. If $\lim_{x\to 0} \frac{\log(3+x) \log(3-x)}{x} = k$, the value of k is
 - (A) 0 (B) $-\frac{3}{3}$
 - (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$
- 31. Let f(a) = g(a) = k and their n^{th} derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n. Further if $\lim_{x\to a} \frac{f(a)g(x)-f(a)-g(a)f(x)+g(a)}{g(x)-f(x)} = 4$, then the value of k is
 - (A) 4 (B) 2 (D) 0
- 32. The function $f(x) = \log (x + \sqrt{x^2 + 1})$, is (A) an even function (B) an odd function (C) a periodic function (D) neither an even nor an odd function
- 33. If f (x) = $\begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then f (x) is} \\ 0, & x = 0 \end{cases}$
 - (A) continuous as well as differentiable for all x
 - (B) continuous for all x but not differentiable at x = 0
 - (C) neither differentiable nor continuous at x = 0
 - (D) discontinuous everywhere
- 34. If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals
 - (A) 3 (B) 1 (C) 2 (D) $\frac{1}{2}$

35. If
$$f(y) = e^y$$
, $g(y) = y$; $y > 0$ and $F(t) = \int_0^t f(t - y) g(y) dy$, then

(A) F (t) =
$$1 - e^{-t} (1 + t)$$

(C) F (t) = $t e^{t}$

(B) F (t) =
$$e^{t}$$
 – (1 + t)
(D) F (t) = $t e^{-t}$

(C) F (t) =
$$t e^{t}$$

(D) F (t) =
$$t e^{-t}$$

36. If
$$f(a + b - x) = f(x)$$
, then $\int_a^b x f(x) dx$ is equal to

(A)
$$\frac{a+b}{2}\int_{a}^{b}f(b-x)dx$$

(B)
$$\frac{a+b}{2}\int_{a}^{b} f(x)dx$$

(C)
$$\frac{b-a}{2}\int_{a}^{b}f(x)dx$$

(D)
$$\frac{a+b}{2}\int_{a}^{b}f(a+b-x)dx$$

37. The value of
$$\lim_{x\to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x}$$
 is

38. The value of the integral
$$I = \int_{0}^{1} x (1 - x)^{n} dx$$
 is

(A)
$$\frac{1}{n+1}$$

(B)
$$\frac{1}{n+2}$$

(C)
$$\frac{1}{n+1} - \frac{1}{n+2}$$

(D)
$$\frac{1}{n+1} + \frac{1}{n+2}$$

$$39. \qquad \lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots + n^4}{n^5} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots + n^3}{n^5} \ is$$

(A)
$$\frac{1}{30}$$

(B) zero

(C)
$$\frac{1}{4}$$

(D) $\frac{1}{5}$

40. Let
$$\frac{d}{dx} F(x) = \left(\frac{e^{\sin x}}{x}\right)$$
, $x > 0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx = F(k) - F(1)$, then one of the possible values

of k, is

41. The area of the region bounded by the curves
$$y = |x - 1|$$
 and $y = 3 - |x|$ is

(A) 2 sq units

(B) 3 sq units

(C) 4 sq units

(D) 6 sq units

42. Let f (x) be a function satisfying f' (x) = f (x) with f (0) = 1 and g (x) be a function that satisfies
$$f(x) + g(x) = x^2$$
. Then the value of the integral $\int_{0}^{1} f(x) g(x) dx$, is

(A)
$$e - \frac{e^2}{2} - \frac{5}{2}$$

(B) e +
$$\frac{e^2}{2} - \frac{3}{2}$$

(C)
$$e - \frac{e^2}{2} - \frac{3}{2}$$

(D) e +
$$\frac{e^2}{2} + \frac{5}{2}$$

43. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively

(A) 2, 1

(B) 1, 2

(C) 3, 2

(D) 2, 3

The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1} y}) \frac{dy}{dx} = 0$, is 44.

(A) $(x-2) = k e^{-tan^{-1}y}$

(B) $2xe^{2\tan^{-1}y} + k$

(C) $x e^{tan^{-1}y} = tan^{-1} y + k$

(D) $x e^{2 \tan^{-1} y} = e^{\tan^{-1} y} + k$

45. If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1$ a_2) x + $(b_1 - b_2)$ y + c = 0, then the value of 'c' is

(A) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$

(B) $a_1^2 + a_2^2 + b_1^2 - b_2^2$

(C) $\frac{1}{2}(a_1^2 + a_2^2 - b_1^2 - b_2^2)$

(D) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$

46. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where t is a parameter, is

- (A) $(3x 1)^2 + (3y)^2 = a^2 b^2$ (C) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$

- (B) $(3x 1)^2 + (3y)^2 = a^2 + b^2$ (D) $(3x + 1)^2 + (3y)^2 = a^2 b^2$

If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair 47. bisects the angle between the other pair, then

(A) p = q

(B) p = -q

(C) pq = 1

(D) pq = -1

48. a square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α (0 < α < $\frac{\pi}{4}$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

- (A) y ($\cos \alpha \sin \alpha$) x ($\sin \alpha \cos \alpha$) = a
- (B) y (cos α + sin α) + x (sin α cos α) = a
- (C) y ($\cos \alpha + \sin \alpha$) + x ($\sin \alpha + \cos \alpha$) = a
- (D) y (cos α + sin α) + x (cos α sin α) = a

If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct 49. points, then

(A) 2 < r < 8

(B) r < 2

(C) r = 2

(D) r > 2

50. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is

(B) $x^2 + y^2 + 2x - 2y = 47$ (D) $x^2 + y^2 - 2x + 2y = 62$

(A) $x^2 + y^2 + 2x - 2y = 62$ (C) $x^2 + y^2 - 2x + 2y = 47$

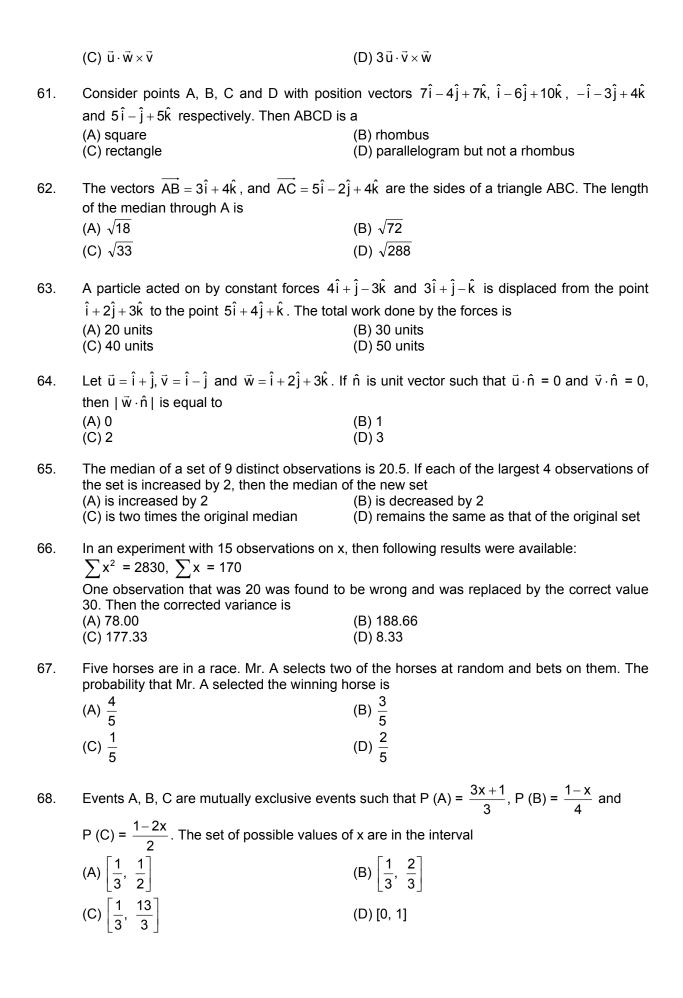
The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 51. 2bt₂), then

(A) $t_2 = -t_1 - \frac{2}{t_1}$	(B) $t_2 = -t_1 + \frac{2}{t_1}$
(D) $t_2 = t_1 - \frac{2}{t_1}$	(D) $t_2 = t_1 + \frac{2}{t_1}$

- 52. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is
 - value of b² is
 (A) 1 (B) 5
 (C) 7 (D) 9
- 53. A tetrahedron has vertices at O (0, 0, 0), A (1, 2, 1), B (2, 1, 3) and C (– 1, 1, 2). Then the angle between the faces OAB and ABC will be
 - (A) $\cos^{-1}\left(\frac{19}{35}\right)$ (B) $\cos^{-1}\left(\frac{17}{31}\right)$ (C) 30° (D) 90°
- 54. The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x 2y 4z 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is

 (B) 2
 - (A) 1 (B) 2 (C) 3 (D) 4
- 55. The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if

 (A) k = 0 or -1(B) k = 1 or -1(C) k = 0 or -3
- 56. The two lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' will be perpendicular, if and only if
 - (A) aa' + bb' + cc' + 1 = 0 (B) aa' + bb' + cc' = 0 (C) (a + a')(b + b') + (c + c') = 0 (D) aa' + cc' + 1 = 0
- 57. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x 2y 6z = 155$ is
 - (A) 26 (B) $11\frac{4}{13}$ (C) 13 (D) 39
- 58. Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a', b', c' from the origin, then
 - (A) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ (B) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (C) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (D) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$
- 59. \vec{a} , \vec{b} , \vec{c} are 3 vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is equal to
 - (A) 0 (C) 7 (B) – 7 (D) 1
- 60. If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$ equals (A) 0 (B) $\vec{u} \cdot \vec{v} \times \vec{w}$



69.	The mean and variance of a random variable having a binomial distribution are 4 and respectively, then $P(X = 1)$ is		
	(A) $\frac{1}{32}$	(B) $\frac{1}{16}$ (D) $\frac{1}{4}$	
	(C) $\frac{1}{8}$	(D) $\frac{1}{}$	
	` ' 8	` ' 4	
70.	The resultant of forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is reversed, then \vec{R} is again doubled. The (A) $3:1:1$ (C) $1:2:3$	is doubled then \vec{R} is doubled. If the direction of then $P^2:Q^2:R^2$ is (B) $2:3:2$ (D) $2:3:1$	
71.	Let R ₁ and R ₂ respectively be the maximum the maximum range on the horizontal plane (A) arithmetic–geometric progression (C) G.P.	ranges up and down an inclined plane and R be . Then R_1 , R , R_2 are in (B) A.P. (D) H.P.	
72.	A couple is of moment \vec{G} and the force forming the couple is \vec{P} . If \vec{P} is turned through a right angle, the moment of the couple thus formed is \vec{H} . If instead, the forces \vec{P} are turned through an angle α , then the moment of couple becomes		
	(A) $\vec{G} \sin \alpha - \vec{H} \cos \alpha$	(B) $\vec{H} \cos \alpha + \vec{G} \sin \alpha$	
	(C) $\vec{G} \cos \alpha - \vec{H} \sin \alpha$	(D) $\vec{H} \sin \alpha - \vec{G} \cos \alpha$	
73.	Two particles start simultaneously from the same point and move along two straight line one with uniform velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions of motion. The relative velocity of the second particle where respect to the first is least after a time		
	(A) $\frac{u \sin \alpha}{f}$	(B) $\frac{f\cos\alpha}{u}$	
	(C) $u \sin \alpha$	(D) $\frac{u\cos\alpha}{f}$	
74.	Two stones are projected from the top of a cliff h meters high, with the same speed u so as to hit the ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle θ to the horizontal then tan θ equals		
	(A) $\sqrt{\frac{2u}{gh}}$	(B) $2g\sqrt{\frac{u}{h}}$	
	(C) $2h\sqrt{\frac{u}{g}}$	(D) $u\sqrt{\frac{2}{gh}}$	
75.	A body travels a distances s in t seconds. It starts from rest and ends at rest. In the first p of the journey, it moves with constant acceleration f and in the second part with const retardation r. The value of t is given by		
	(A) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$	(B) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$	
	(C) $\sqrt{2s(f+r)}$	(D) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$	

Solutions

1. Clearly both one – one and onto

Because if n is odd, values are set of all non-negative integers and if n is an even, values are set of all negative integers.

Hence, (C) is the correct answer.

2. $z_1^2 + z_2^2 - z_1 z_2 = 0$ $(z_1 + z_2)^2 - 3z_1 z_2 = 0$ $a^2 = 3b$.

Hence, (C) is the correct answer.

5. $\begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$ $(1 + abc) \begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} = 0$

$$\Rightarrow$$
 abc = -1 .

Hence, (B) is the correct answer

4. $\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$

$$\left(\frac{1+i}{1-i}\right)^{x} = i^{x}$$

$$\Rightarrow$$
 x = 4n.

Hence, (A) is the correct answer.

6. Coefficient determinant = $\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0$

$$\Rightarrow$$
 b = $\frac{2ac}{a+c}$.

Hence, (C) is the correct answer

8. $x^2 - 3|x| + 2 = 0$

$$(|x|-1)(|x|-2)=0$$

$$\Rightarrow$$
 x = \pm 1, \pm 2.

Hence, (B) is the correct answer

7. Let α , β be the roots

$$\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$$

$$\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$$

$$\Rightarrow$$
 2a²c = b (a² + bc)

$$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$$
 are in H.P.

Hence, (C) is the correct answer

10.
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$
$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$

Hence, (B) is the correct answer.

9.
$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2-5a+3}$$

$$2\alpha^2 = \frac{2}{a^2-5a+6}$$

$$\frac{(3a-1)^2}{a(a^2-5a+3)^2} = \frac{1}{a^2+5a+6}$$

$$\Rightarrow a = \frac{2}{3}.$$

Hence, (A) is the correct answer

- 12. Clearly $5! \times 6!$ (A) is the correct answer
- 11. Number of choices = ${}^5C_4 \times {}^8C_6 + {}^5C_5 \times {}^8C_5$ = 140 + 56. Hence, (B) is the correct answer

13.
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

Since, $1 + \omega^n + \omega^{2n} = 0$, if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

14.
$${}^{n}C_{r+1} + {}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r}$$

$$= {}^{n+1}C_{r+1} + {}^{n+1}C_{r}$$

$$= {}^{n+2}C_{r+1} + {}^{n+1}C_{r}$$

Hence, (B) is the correct answer

17.
$$\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \dots$$
$$= 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$$

$$= 1 - 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots\right)$$

$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$

$$= 2 \log 2 - \log e$$

$$= \log\left(\frac{4}{e}\right).$$

Hence, (D) is the correct answer.

- 15. General term = 256 C_r ($\sqrt{3}$) $^{256-r}$ [(5) $^{1/8}$]^r From integral terms, or should be 8k \Rightarrow k = 0 to 32. Hence, (B) is the correct answer.
- 18. $f(x) = ax^2 + bx + c$ f(1) = a + b + c f(-1) = a - b + c $\Rightarrow a + b + c = a - b + c$ also 2b = a + c f'(x) = 2ax + b = 2ax $f'(a) = 2a^2$ f'(b) = 2ab f'(c) = 2ac $\Rightarrow AP$. Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)

21.
$$a\left(\frac{1+\cos C}{2}\right) + c\left(\frac{1+\cos A}{2}\right) = \frac{3b}{2}$$

$$\Rightarrow a+c+b=3b$$

$$a+c=2b.$$
Hence, (A) is the correct answer

26.
$$f(1) = 7$$

$$f(1 + 1) = f(1) + f(1)$$

$$f(2) = 2 \times 7$$
only $f(3) = 3 \times 7$

$$\sum_{r=1}^{n} f(r) = 7 (1 + 2 + \dots + n)$$

$$= 7 \frac{n(n+1)}{2}.$$

25. (B)

23.
$$-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$$
 $-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$

$$\frac{1}{2} \le |a| \le \frac{1}{\sqrt{2}}.$$

Hence, (D) is the correct answer

27. LHS =
$$1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$$

= $1 - {^{n}C_{1}} + {^{n}C_{2}} - \dots$

Hence, (C) is the correct answer

30.
$$\lim_{x\to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.

28.
$$4 - x^{2} \neq 0$$

$$\Rightarrow x \neq \pm 2$$

$$x^{3} - x > 0$$

$$\Rightarrow x (x + 1) (x - 1) > 0.$$
Hence (D) is the correct answer.

29.
$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^2}$$
$$= \frac{1}{32}.$$

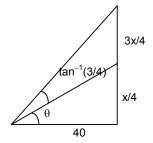
Hence, (C) is the correct answer.

32.
$$f(-x) = -f(x)$$

Hence, (B) is the correct answer.

1.
$$\sin (\theta + \alpha) = \frac{x}{40}$$

 $\sin a = \frac{x}{140}$
 $\Rightarrow x = 40$.
Hence, (B) is the correct answer



34.
$$f(x) = 0$$
 at $x = p$, q
 $6p^2 + 18ap + 12a^2 = 0$
 $6q^2 + 18aq + 12a^2 = 0$
 $f''(x) < 0$ at $x = p$
and $f''(x) > 0$ at $x = q$.

30. Applying L. Hospital's Rule
$$\lim_{x\to 2a} \frac{f(a)g'(a) - g(a)f'(a)}{g'(a) - f'(a)} = 4$$

$$\frac{\mathsf{k}(\mathsf{g}'(\mathsf{a})-\mathsf{f}'(\mathsf{a}))}{(\mathsf{g}'(\mathsf{a})-\mathsf{f}'(\mathsf{a}))}=4$$

k = 4

Hence, (A) is the correct answer.

36.
$$\int_{a}^{b} x f(x) dx$$

$$= \int_{a}^{b} (a+b-x) f(a+b-x) dx.$$

Hence, (B) is the correct answer.

33.
$$f'(0)$$

$$f'(0-h) = 1$$

$$f'(0+h) = 0$$

$$LHD \neq RHD.$$
Hence, (B) is the correct answer.

37.
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$

Hence (C) is the correct answer.

38.
$$\int_{0}^{1} x (1-x)^{n} dx = \int_{0}^{1} x^{n} (1-x)$$
$$= \int_{0}^{1} (x^{n} - x^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}.$$

Hence, (C) is the correct answer.

35.
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$
$$= \int_{0}^{t} f(y) f(t - y) dy$$
$$= \int_{0}^{t} e^{y} (t - y) dy$$
$$= x^{t} - (1 + t).$$

Hence, (B) is the correct answer.

34. Clearly
$$f''(x) > 0$$
 for $x = 2a \Rightarrow q = 2a < 0$ for $x = a \Rightarrow p = a$ or $p^2 = q \Rightarrow a = 2$. Hence, (C) is the correct answer.

40.
$$F'(x) = \frac{e^{\sin x}}{3^x}$$

$$= \int \frac{3}{x} e^{\sin x} dx = F(k) - F(1)$$

$$= \int_{1}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$$

$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

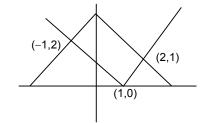
$$\Rightarrow k = 64.$$

$$F(64) - F(1) = F(k) - F(1)$$

Hence, (D) is the correct answer.

41. Clearly area =
$$2\sqrt{2} \times \sqrt{2}$$

= sq units



45. Let p (x, y)

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$

$$(a_1 - a_2) x + (b_1 - b_2) y + \frac{1}{2} (b_2^2 - b_1^2 + a_2^2 - a_1^2) = 0.$$

Hence, (A) is the correct answer.

46.
$$x = \frac{a\cos t + b\sin t + 1}{3}, y = \frac{a\sin t - b\cos t + 1}{3}$$

$$\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$$

Hence, (B) is the correct answer.

43. Equation
$$y^2 = 4a 9x - h$$
)
 $2yy_1 = 4a \Rightarrow yy_1 = 2a$
 $yy_2 = y_1^2 = 0$.
Hence (B) is the correct answer.

42.
$$\int_{0}^{1} f(x)[x^{2} - f(x)] dx$$
solving this by putting f'(x) = f(x).
Hence, (B) is the correct answer.

50. Intersection of diameter is the point
$$(1, -1)$$

$$\pi s^2 = 154$$

$$\Rightarrow s^2 = 49$$

$$(x - 1)^2 + (y + 1)^2 = 49$$
Hence, (C) is the correct answer.
47. (D)

49.
$$\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1} y} - x)$$

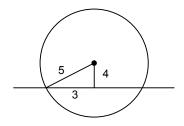
(D)

$$\frac{dx}{dy} + \frac{x}{1+y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+y^2}$$

52.
$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$
$$\Rightarrow e_1 = \frac{5}{4}$$
$$ae_2 = \sqrt{1 - \frac{b^2}{16}} \times 4 = 3$$
$$\Rightarrow b^2 = 7.$$

Hence, (C) is the correct answer.

54. (C)



Hence, (A) is the correct answer.

49.
$$(x-1)^2 + (y-3)^2 = r^2$$

 $(x-4)^2 + (y+2)^2 - 16 - 4 + 8 = 0$
 $(x-4)^2 + (y+2)^2 = 12$.

67. Select 2 out of 5
$$= \frac{2}{5}.$$
Hence (D) is the core

Hence, (D) is the correct answer.

65.
$$0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1$$

$$12x+4+3-3x+6-12x \le 1$$

$$0 \le 13-3x \le 12$$

$$3x \le 13$$

$$\Rightarrow x \ge \frac{1}{3}$$

$$x \le \frac{13}{3}.$$

Hence, (C) is the correct answer.

3.
$$\operatorname{Arg}\left(\frac{z}{\omega}\right) = \frac{\pi}{2}$$
$$|z\omega| = 1$$
$$\overline{z}\omega = -i \text{ or } +i.$$

$$|z\omega| = 1$$

$$\overline{z}\omega = -i \text{ or } + i$$
.