FIITJEE AIEEE – 2004 (MATHEMATICS)

Important Instructions:

- The test is of $1\frac{1}{2}$ hours duration. i)
- ii) The test consists of 75 questions.
- The maximum marks are 225. iii)
- iv) For each correct answer you will get 3 marks and for a wrong answer you will get -1 mark.
- Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The 1. relation R is
 - (1) a function

(2) reflexive

(3) not symmetric

- (4) transitive
- The range of the function $f(x) = {}^{7-x}P_{x-3}$ is 2.
 - $(1) \{1, 2, 3\}$

 $(3) \{1, 2, 3, 4\}$

- (2) {1, 2, 3, 4, 5} (4) {1, 2, 3, 4, 5, 6}
- Let z, w be complex numbers such that $\overline{z} + i \overline{w} = 0$ and arg zw = π . Then arg z equals 3.

- If z = x i y and $z^{\frac{1}{3}} = p + iq$, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{\left(p^2 + q^2\right)}$ is equal to 4.
 - (1) 1

(2) -2

(3)2

- (4) -1
- If $|z^2 1| = |z|^2 + 1$, then z lies on 5.
 - (1) the real axis

(2) an ellipse

(3) a circle

- (4) the imaginary axis.
- Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is 6.
 - (1) A is a zero matrix

(2) $A^2 = I$

(3) A⁻¹does not exist

(4) A = (-1)I, where I is a unit matrix

- Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 10 \end{pmatrix} B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is the inverse of matrix A, then α is 7.
 - (1) 2(3)2

- (2)5(4) -1
- If $a_1, a_2, a_3, ..., a_n, ...$ are in G.P., then the value of the determinant 8.

$$\begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}, \text{ is }$$

(1) 0

(3)2

- (2) -2 (4) 1
- 9. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation
 - (1) $x^2 + 18x + 16 = 0$

(2) $x^2 - 18x - 16 = 0$

(3) $x^2 + 18x - 16 = 0$

- (4) $x^2 18x + 16 = 0$
- If (1 p) is a root of quadratic equation $x^2 + px + (1 p) = 0$, then its roots are 10.
 - (1) 0, 1

(3) 0, -1

- Let $S(K) = 1 + 3 + 5 + ... + (2K 1) = 3 + K^2$. Then which of the following is true? 11.
 - (1) S(1) is correct
 - (2) Principle of mathematical induction can be used to prove the formula
 - (3) $S(K) \implies S(K + 1)$
 - (4) $S(K) \Rightarrow S(K+1)$
- 12. How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical order?
 - (1) 120

(2)480

(3)360

- (4)240
- The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the 13. boxes is empty is
 - (1)5

(2) ${}^{8}C_{3}$

 $(3)3^{8}$

- (4)21
- If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal 14. roots, then the value of 'g' is

(2)4

(3)3

(4) 12

15. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if α equals

$$(1) -\frac{5}{3}$$

(2)
$$\frac{3}{5}$$

(3)
$$\frac{-3}{10}$$

- (4) $\frac{10}{3}$
- 16. The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is

$$(1)(n-1)$$

$$(2) (-1)^{n} (1-n)$$

$$(3)(-1)^{n-1}(n-1)^2$$

(4)
$$(-1)^{n-1}$$
 n

17. If $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to

$$(1)\frac{1}{2}n$$

(2)
$$\frac{1}{2}$$
n – 1

(4)
$$\frac{2n-1}{2}$$

18. Let T_r be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, $m \ne n$, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a - d equals

$$(3)\frac{1}{mn}$$

(4)
$$\frac{1}{m} + \frac{1}{n}$$

19. The sum of the first n terms of the series $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + ...$ is $\frac{n(n+1)^2}{2}$ when n is even. When n is odd the sum is

$$(1)\frac{3n\big(n+1\big)}{2}$$

(2)
$$\frac{n^2(n+1)}{2}$$

$$(3)\frac{n(n+1)^2}{4}$$

$$(4) \left[\frac{n(n+1)}{2} \right]^2$$

20. The sum of series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + ...$ is

$$(1)\frac{\left(e^2-1\right)}{2}$$

(2)
$$\frac{(e-1)^2}{2e}$$

$$(3)\frac{\left(e^2-1\right)}{2e}$$

$$(4) \; \frac{\left(e^2-2\right)}{e}$$

21. Let α , β be such that $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the value of $\cos \frac{\alpha - \beta}{2}$ is

 $(1)-\frac{3}{\sqrt{130}}$

(2) $\frac{3}{\sqrt{130}}$

 $(3)\frac{6}{65}$

 $(4) - \frac{6}{65}$

22. If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the maximum and minimum values of u^2 is given by

 $(1)2(a^2+b^2)$

(2) $2\sqrt{a^2+b^2}$

 $(3)(a+b)^2$

(4) $(a-b)^2$

23. The sides of a triangle are $\sin\alpha$, $\cos\alpha$ and $\sqrt{1+\sin\alpha\cos\alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is

 $(1)60^{\circ}$

 $(2) 90^{\circ}$

 $(3)120^{\circ}$

(4) 150°

24. A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retires 40 meter away from the tree the angle of elevation becomes 30°. The breadth of the river is

(1) 20 m

(2) 30 m

(3) 40 m

(4) 60 m

25. If $f: R \to S$, defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$, is onto, then the interval of S is

(1) [0, 3]

(2) [-1, 1]

(3) [0, 1]

(4) [-1, 3]

26. The graph of the function y = f(x) is symmetrical about the line x = 2, then

(1) f(x + 2) = f(x - 2)

(2) f(2 + x) = f(2 - x)

(3) f(x) = f(-x)

(4) f(x) = -f(-x)

27. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is

(1) [2, 3]

(2) [2, 3)

(3)[1, 2]

(4) [1, 2)

28. If $\lim_{x\to\infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2$, then the values of a and b, are

 $(1)a \in \underline{R}, b \in \underline{R}$

(2) $a = 1, b \in \mathbb{R}$

 $(3)a \in R, b = 2$

(4) a = 1 and b = 2

(1) 1

 $(2) \frac{1}{2}$

 $(3)-\frac{1}{2}$

(4) -1

30. If
$$x = e^{y + e^{y + ... to \infty}}$$
, $x > 0$, then $\frac{dy}{dx}$ is

 $(1)\frac{x}{1+x}$

(2) $\frac{1}{x}$

 $(3)\frac{1-x}{x}$

(4) $\frac{1+x}{x}$

31. A point on the parabola
$$y^2 = 18x$$
 at which the ordinate increases at twice the rate of the abscissa is

(1)(2,4)

(2)(2,-4)

 $(3)\left(\frac{-9}{8}, \frac{9}{2}\right)$

 $(4)\left(\frac{9}{8},\,\frac{9}{2}\right)$

32. A function
$$y = f(x)$$
 has a second order derivative $f''(x) = 6(x - 1)$. If its graph passes through the point $(2, 1)$ and at that point the tangent to the graph is $y = 3x - 5$, then the function is

 $(1)(x-1)^2$

(2) $(x-1)^3$

 $(3)(x+1)^3$

(4) $(x+1)^2$

33. The normal to the curve
$$x = a(1 + \cos\theta)$$
, $y = a\sin\theta$ at ' θ ' always passes through the fixed point

(1)(a, 0)

(3)(0,0)

(2) (0, a) (4) (a, a)

34. If
$$2a + 3b + 6c = 0$$
, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval

(1)(0,1)

(2)(1,2)

(3)(2,3)

(4)(1,3)

$$35. \qquad \lim_{n\to\infty}\sum_{r=1}^n\frac{1}{n}e^{\frac{r}{n}}\ is$$

(1)e

(2) e - 1(4) e + 1

(3) 1 - e

36. If
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha) + C$$
, then value of (A, B) is

(1) ($\sin\alpha$, $\cos\alpha$)

(2) ($\cos \alpha$, $\sin \alpha$)

(3) (- $\sin\alpha$, $\cos\alpha$)

(4) (- $\cos\alpha$, $\sin\alpha$)

37.
$$\int \frac{dx}{\cos x - \sin x}$$
 is equal to

$$(1)\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+C$$

(2)
$$\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + C$$

$$(3)\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{3\pi}{8}\right)\right|+C$$

(4)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

- The value of $\int_{2}^{3} |1-x^2| dx$ is 38.
 - $(1)\frac{28}{2}$

(2) $\frac{14}{3}$

 $(3)\frac{7}{2}$

- $(4) \frac{1}{3}$
- The value of I = $\int_{1}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx \text{ is}$ 39.
 - (1)0

(3)2

- (2) 1 (4) 3
- If $\int_{0}^{\pi} xf(\sin x) dx = A \int_{0}^{\pi/2} f(\sin x) dx$, then A is 40.
 - (1)0

 $(2) \pi$

 $(3)\frac{\pi}{4}$

- $(4) 2\pi$
- If $f(x) = \frac{e^x}{1 + e^x}$, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1 x)\}dx$ and $I_2 = \int_{f(-a)}^{f(a)} g\{x(1 x)\}dx$ then the value of $\frac{I_2}{I_1}$ is 41.
 - (1)2

(3) -1

- The area of the region bounded by the curves y = |x 2|, x = 1, x = 3 and the x-axis is 42.
 - (1) 1

(2)2

(3)3

- (4)4
- The differential equation for the family of curves $x^2 + y^2 2ay = 0$, where a is an arbitrary 43. constant is
 - $(1) 2(x^2 y^2)y' = xy$

(2) $2(x^2 + y^2)y' = xy$

 $(3)(x^2-v^2)v'=2xv$

- (4) $(x^2 + v^2)v' = 2xv$
- The solution of the differential equation $y dx + (x + x^2y) dy = 0$ is 44.
 - $(1) \frac{1}{xy} = C$

(2) $-\frac{1}{xy} + \log y = C$

 $(3)\frac{1}{xy} + \log y = C$

(4) $\log y = Cx$

45. Let A (2, -3) and B(-2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line

$$(1) 2x + 3y = 9$$

$$(2) 2x - 3y = 7$$

$$(3) 3x + 2y = 5$$

$$(4)$$
 3x - 2y = 3

46. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is

(1)
$$\frac{x}{2} + \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(2)
$$\frac{x}{2} - \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(3)
$$\frac{x}{2} + \frac{y}{3} = 1$$
 and $\frac{x}{2} + \frac{y}{1} = 1$

(4)
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$

- If the sum of the slopes of the lines given by $x^2 2cxy 7y^2 = 0$ is four times their product, 47. then c has the value
 - (1) 1

(3)2

- (2) -1(4) -2
- If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals 48.
 - (1) 1

(3)3

- If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then 49. the locus of its centre is

$$(1)2ax + 2by + (a^2 + b^2 + 4) = 0$$

(2)
$$2ax + 2by - (a^2 + b^2 + 4) = 0$$

$$(3) 2ax - 2by + (a^2 + b^2 + 4) = 0$$

$$(3) 2ax - 2by + (a^2 + b^2 + 4) = 0$$

$$(4) 2ax - 2by - (a^2 + b^2 + 4) = 0$$

50. A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is

$$(1)(x-p)^2 = 4qy$$

(2)
$$(x-q)^2 = 4py$$

$$(3)(y-p)^2 = 4qx$$

(4)
$$(y-q)^2 = 4px$$

If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 51. 10π , then the equation of the circle is

$$(1) x^2 + y^2 - 2x + 2y - 23 = 0$$

(2)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(3)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(4)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on 52. AB as a diameter is

$$(1) x^2 + y^2 - x - y = 0$$

(2)
$$x^2 + y^2 - x + y = 0$$

$$(3) x^2 + y^2 + x + y = 0$$

(4)
$$x^2 + y^2 + x - y = 0$$

If $a \ne 0$ and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the 53. parabolas $v^2 = 4ax$ and $x^2 = 4av$, then

$$(1)d^2 + (2b + 3c)^2 = 0$$

(2)
$$d^2 + (3b + 2c)^2 = 0$$

$$(3) d^2 + (2b - 3c)^2 = 0$$

$$(4) d^2 + (3b - 2c)^2 = 0$$

- The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 54. 4, then the equation of the ellipse is
 - $(1)3x^2 + 4y^2 = 1$

(2) $3x^2 + 4y^2 = 12$

 $(3)4x^2 + 3y^2 = 12$

- (4) $4x^2 + 3y^2 = 1$
- A line makes the same angle θ , with each of the x and z axis. If the angle β , which it makes 55. with y-axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals
 - $(1)\frac{2}{3}$

 $(3)\frac{3}{5}$

- Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is 56.
 - $(1)\frac{3}{2}$

- A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and 57. x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by
 - (1) (3a, 3a, 3a), (a, a, a)

(2) (3a, 2a, 3a), (a, a, a)

(3) (3a, 2a, 3a), (a, a, 2a)

- (4) (2a, 3a, 3a), (2a, a, a)
- If the straight lines x = 1 + s, $y = -3 \lambda s$, $z = 1 + \lambda s$ and $x = \frac{t}{2}$, y = 1 + t, z = 2 t with 58. parameters s and t respectively, are co-planar then λ equals

(2) -1

 $(3)-\frac{1}{2}$

- (4)0
- $x^2 + y^2 + z^2 + 7x 2y z = 13$ spheres 59. The intersection the $x^2 + y^2 + z^2 - 3x + 3y + 4z = 8$ is the same as the intersection of one of the sphere and the plane
 - (1) x y z = 1

(2) x - 2y - z = 1(4) 2x - y - z = 1

(3) x - y - 2z = 1

- Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that no two of these are collinear. If the 60. vector $\vec{a} + 2\vec{b}$ is collinear with \vec{c} and $\vec{b} + 3\vec{c}$ is collinear with \vec{a} (λ being some non-zero scalar) then $\vec{a} + 2\vec{b} + 6\vec{c}$ equals
 - $(1)\lambda \vec{a}$

 $(2) \lambda b$

 $(3)\lambda\vec{c}$

- (4) 0
- A particle is acted upon by constant forces $4\hat{i} + \hat{j} 3\hat{k}$ and $3\hat{i} + \hat{j} \hat{k}$ which displace it from a 61. point $\hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The work done in standard units by the forces is given by

(1) 40	(2) 30
(3) 25	(4) 15

- 62. If \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors and λ is a real number, then the vectors $\overline{a} + 2\overline{b} + 3\overline{c}$, $\lambda \overline{b} + 4\overline{c}$ and $(2\lambda 1)\overline{c}$ are non-coplanar for
 - (1) all values of λ

- (2) all except one value of λ
- (3) all except two values of λ
- (4) no value of λ
- 63. Let \overline{u} , \overline{v} , \overline{w} be such that $|\overline{u}| = 1$, $|\overline{v}| = 2$, $|\overline{w}| = 3$. If the projection \overline{v} along \overline{u} is equal to that of \overline{w} along \overline{u} and \overline{v} , \overline{w} are perpendicular to each other then $|\overline{u} \overline{v} + \overline{w}|$ equals
 - (1) 2

(2) $\sqrt{7}$

 $(3)\sqrt{14}$

- (4) 14
- 64. Let \overline{a} , \overline{b} and \overline{c} be non-zero vectors such that $(\overline{a} \times \overline{b}) \times \overline{c} = \frac{1}{3} |\overline{b}| |\overline{c}| \overline{a}$. If θ is the acute angle between the vectors \overline{b} and \overline{c} , then $\sin \theta$ equals
 - $(1)\frac{1}{3}$

(2) $\frac{\sqrt{2}}{3}$

 $(3)\frac{2}{3}$

- (4) $\frac{2\sqrt{2}}{3}$
- 65. Consider the following statements:
 - (a) Mode can be computed from histogram
 - (b) Median is not independent of change of scale
 - (c) Variance is independent of change of origin and scale.

Which of these is/are correct?

(1) only (a)

(2) only (b)

(3) only (a) and (b)

- (4) (a), (b) and (c)
- 66. In a series of 2n observations, half of them equal a and remaining half equal –a. If the standard deviation of the observations is 2, then |a| equals
 - $(1)\frac{1}{n}$

(2) $\sqrt{2}$

(3) 2

- (4) $\frac{\sqrt{2}}{n}$
- 67. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is
 - $(1)\frac{3}{20}$

 $(2) \frac{1}{5}$

 $(3)\frac{7}{20}$

- $(4) \frac{4}{5}$
- 68. A random variable X has the probability distribution:

X:	1	2	3	4	5	6	7	8
p(X):	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the events E = {X is a prime number} and F = {X < 4}, the probability P (E \cup F) is

(1) 0.87

(2) 0.77

(3) 0.35

(4) 0.50

69. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is

 $(1)\frac{37}{256}$

 $(2) \frac{219}{256}$

 $(3)\frac{128}{256}$

70. With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then the forces are

 $(1)(2+\sqrt{2})N$ and $(2-\sqrt{2})N$

- (2) $(2 + \sqrt{3})N$ and $(2 \sqrt{3})N$
- $(3)\left(2+\frac{1}{2}\sqrt{2}\right)N \text{ and } \left(2-\frac{1}{2}\sqrt{2}\right)N \qquad \qquad (4)\left(2+\frac{1}{2}\sqrt{3}\right)N \text{ and } \left(2-\frac{1}{2}\sqrt{3}\right)N$

In a right angle $\triangle ABC$, $\angle A = 90^{\circ}$ and sides a, b, c are respectively, 5 cm, 4 cm and 3 cm. If a 71. force F has moments 0, 9 and 16 in N cm. units respectively about vertices A, B and C, then magnitude of \vec{F} is

(1) 3

(2)4

(3)5

(4)9

Three forces \vec{P} , \vec{Q} and \vec{R} acting along IA, IB and IC, where I is the incentre of a \triangle ABC, are 72. in equilibrium. Then $\vec{P}:\vec{Q}:\vec{R}$ is

 $(1)\cos\frac{A}{2}:\cos\frac{B}{2}:\cos\frac{C}{2}$

(2) $\sin \frac{A}{2}$: $\sin \frac{B}{2}$: $\sin \frac{C}{2}$

 $(3) \sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$

(4) $\csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$

73. A particle moves towards east from a point A to a point B at the rate of 4 km/h and then towards north from B to C at the rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively

(1) $\frac{17}{4}$ km/h and $\frac{13}{4}$ km/h

(2) $\frac{13}{4}$ km/h and $\frac{17}{4}$ km/h

(3) $\frac{17}{9}$ km/h and $\frac{13}{9}$ km/h

(4) $\frac{13}{9}$ km/h and $\frac{17}{9}$ km/h

A velocity $\frac{1}{4}$ m/s is resolved into two components along OA and OB making angles 30° and 74.

45° respectively with the given velocity. Then the component along OB is

 $(1) \frac{1}{9} \text{m/s}$

(2) $\frac{1}{4}(\sqrt{3}-1)$ m/s

(3) $\frac{1}{4}$ m/s

(4) $\frac{1}{9}(\sqrt{6}-\sqrt{2})$ m/s

- 75.

FIITJEE AIEEE - 2004 (MATHEMATICS)

ANSWERS

1.	3	16.	2	31. 4	46. 4	61. 1
2.	1	17.	1	32. 2	47. 3	62. 3
3.	3	18.	1	33. 1	48. 4	63. 3
4.	2	19.	2	34. 1	49. 2	64. 4
5.	4	20.	2	35. 2	50. 1	65. 3
6.	2	21.	1	36. 2	51. 1	66. 3
7.	2	22.	4	37. 4	52. 1	67. 3
8.	1	23.	3	38. 1	53. 1	68. 2
9.	4	24.	1	39. 3	54. 2	69. 4
10.	3	25.	4	40. 2	55. 3	70. 3
11.	4	26.	2	41. 1	56. 3	71. 3
12.	3	27.	2	42. 1	57. 2	72. 1
13.	4	28.	2	43. 3	58. 1	73. 1
14.	1	29.	3	44. 2	59. 4	74. 4
15.	3	30.	3	45. 1	60. 4	75. 2

FIITJEE AIEEE – 2004 (MATHEMATICS)

SOLUTIONS

- 1. $(2, 3) \in R$ but $(3, 2) \notin R$. Hence R is not symmetric.
- $f(x) = {}^{7-x}P_{x-3}$ 2. $7-x \ge 0 \implies x \le 7$ $x-3 \ge 0 \implies x \ge 3$. and $7-x \ge x-3 \implies x \le 5$ \Rightarrow 3 \leq x \leq 5 \Rightarrow x = 3, 4, 5 \Rightarrow Range is {1, 2, 3}.
- Here $\omega = \frac{z}{i} \Rightarrow \arg\left(z, \frac{z}{i}\right) = \pi \Rightarrow 2 \arg(z) \arg(i) = \pi \Rightarrow \arg(z) = \frac{3\pi}{4}$. 3.
- $z = (p + iq)^3 = p(p^2 3q^2) iq(q^2 3p^2)$

$$\Rightarrow \quad \frac{x}{p} = p^2 - 3q^2 \quad \& \quad \frac{y}{q} = q^2 - 3p^2 \Rightarrow \quad \frac{\frac{x}{p} + \frac{y}{q}}{\left(p^2 + q^2\right)} = -2.$$

- $|z^2 1|^2 = (|z|^2 + 1)^2 \Rightarrow (z^2 1)(\overline{z}^2 1) = |z|^4 + 2|z|^2 + 1$ $\Rightarrow z^2 + \overline{z}^2 + 2z\overline{z} = 0 \Rightarrow z + \overline{z} = 0$ \Rightarrow R (z) = 0 \Rightarrow z lies on the imaginary axis.
- $A.A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = I.$ 6.
- 7. $AB = I \Rightarrow A(10 B) = 10$ $\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 5 - \alpha \\ 0 & 10 & \alpha - 5 \\ 0 & 0 & 5 + \alpha \end{bmatrix} = 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{if } \alpha = 5 \ .$
- 8. $\log a_{n+6} \log a_{n+7} \log a_{n+8}$ $C_3 \to C_3 - C_2, C_2 \to C_3 - C_1$ $\begin{vmatrix} \log a_n & \log r & \log r \end{vmatrix}$ = $\begin{vmatrix} \log a_{n+3} & \log r & \log r \end{vmatrix}$ = 0 (where r is a common ratio). loga logr logr
- Let numbers be a, b \Rightarrow a + b = 18, $\sqrt{ab} = 4$ \Rightarrow ab = 16, a and b are roots of the 9. equation

$$\Rightarrow$$
 $x^2 - 18x + 16 = 0$.

10. **(3)**

$$(1-p)^2 + p(1-p) + (1-p) = 0 \quad \text{(since } (1-p) \text{ is a root of the equation } x^2 + px + (1-p) = 0)$$

$$\Rightarrow (1-p)(1-p+p+1) = 0$$

$$\Rightarrow 2(1-p) = 0 \Rightarrow (1-p) = 0 \Rightarrow p = 1$$
sum of root is $\alpha + \beta = -p$ and product $\alpha\beta = 1-p = 0$ (where $\beta = 1-p = 0$)
$$\Rightarrow \alpha + 0 = -1 \Rightarrow \alpha = -1 \Rightarrow \text{Roots are } 0, -1$$

11.
$$S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^{2}$$

$$S(k + 1) = 1 + 3 + 5 + \dots + (2k - 1) + (2k + 1)$$

$$= (3 + k^{2}) + 2k + 1 = k^{2} + 2k + 4 \quad [from S(k) = 3 + k^{2}]$$

$$= 3 + (k^{2} + 2k + 1) = 3 + (k + 1)^{2} = S(k + 1).$$
Although S(k) in itself is not true but it considered true will always imply towards S(k + 1).

- 12. Since in half the arrangement A will be before E and other half E will be before A. Hence total number of ways = $\frac{6!}{2}$ = 360.
- 13. Number of balls = 8 number of boxes = 3 Hence number of ways = ${}^{7}C_{2}$ = 21.
- 14. Since 4 is one of the root of $x^2 + px + 12 = 0 \Rightarrow 16 + 4p + 12 = 0 \Rightarrow p = -7$ and equation $x^2 + px + q = 0$ has equal roots $\Rightarrow D = 49 4q = 0 \Rightarrow q = \frac{49}{4}.$
- 15. Coefficient of Middle term in $(1 + \alpha x)^4 = t_3 = {}^4C_2 \cdot \alpha^2$ Coefficient of Middle term in $(1 - \alpha x)^6 = t_4 = {}^6C_3 (-\alpha)^3$ ${}^4C_2\alpha^2 = -{}^6C_3.\alpha^3 \Rightarrow -6 = 20\alpha \Rightarrow \alpha = \frac{-3}{10}$
- 16. Coefficient of x^n in $(1 + x)(1 x)^n = (1 + x)({}^nC_0 {}^nC_1x + \dots + (-1)^{n-1} {}^nC_{n-1} x^{n-1} + (-1)^n {}^nC_n x^n)$ = $(-1)^n {}^nC_n + (-1)^{n-1} {}^nC_{n-1} = (-1)^n (1-n)$.

17.
$$t = \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} = \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{n-r}} = \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{r}} \quad \left(\because {}^{n}C_{r} = {}^{n}C_{n-r} \right)$$
$$2t_{n} = \sum_{r=0}^{n} \frac{r+n-r}{{}^{n}C_{r}} = \sum_{r=0}^{n} \frac{n}{{}^{n}C_{r}} \Rightarrow t_{n} = \frac{n}{2} \sum_{r=0}^{n} \frac{1}{{}^{n}C_{r}} = \frac{n}{2} S_{n} \Rightarrow \frac{t_{n}}{S_{n}} = \frac{n}{2}$$

18.
$$T_m = \frac{1}{n} = a + (m-1)d$$
(1) and $T_n = \frac{1}{m} = a + (n-1)d$ (2)

from (1) and (2) we get
$$a = \frac{1}{mn}$$
, $d = \frac{1}{mn}$
Hence $a - d = 0$

19. If n is odd then
$$(n-1)$$
 is even \Rightarrow sum of odd terms $=\frac{(n-1)n^2}{2}+n^2=\frac{n^2(n+1)}{2}$.

20.
$$\frac{e^{\alpha} + e^{-\alpha}}{2} = 1 + \frac{\alpha^{2}}{2!} + \frac{\alpha^{4}}{4!} + \frac{\alpha^{6}}{6!} + \dots$$

$$\frac{e^{\alpha} + e^{-\alpha}}{2} - 1 = \frac{\alpha^{2}}{2!} + \frac{\alpha^{4}}{4!} + \frac{\alpha^{6}}{6!} + \dots$$
put $\alpha = 1$, we get
$$\frac{(e - 1)^{2}}{2e} = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$

21.
$$\sin \alpha + \sin \beta = -\frac{21}{65}$$
 and $\cos \alpha + \cos \beta = -\frac{27}{65}$.

Squaring and adding, we get

$$2 + 2\cos(\alpha - \beta) = \frac{1170}{(65)^2}$$

$$\Rightarrow \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{9}{130} \Rightarrow \cos\left(\frac{\alpha - \beta}{2}\right) = \frac{-3}{\sqrt{130}} \qquad \left(\because \frac{\pi}{2} < \frac{\alpha - \beta}{2} < \frac{3\pi}{2}\right).$$

$$22. \qquad u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$$

$$= \sqrt{\frac{a^2 + b^2}{2} + \frac{a^2 - b^2}{2} \cos 2\theta} + \sqrt{\frac{a^2 + b^2}{2} + \frac{b^2 - a^2}{2} \cos 2\theta}$$

$$\Rightarrow u^2 = a^2 + b^2 + 2\sqrt{\left(\frac{a^2 + b^2}{2}\right)^2 - \left(\frac{a^2 - b^2}{2}\right)^2 \cos^2 2\theta}$$

$$= \sin v \text{ where } u^2 = a^2 + b^2 + 2ab$$

$$= \sin v \text{ where } u^2 = 2\left(a^2 + b^2\right)$$

$$\Rightarrow u_{\text{max}}^2 - u_{\text{min}}^2 = \left(a - b\right)^2.$$

23. Greatest side is $\sqrt{1 + \sin \alpha \cos \alpha}$, by applying cos rule we get greatest angle = 120°.

24.
$$\tan 30^{\circ} = \frac{h}{40 + b}$$

 $\Rightarrow \sqrt{3} h = 40 + b$ (1) $\frac{30^{\circ}}{40} = \frac{60^{\circ}}{b}$
 $\tan 60^{\circ} = h/b \Rightarrow h = \sqrt{3} b$ (2) $\frac{40}{b} = \frac{1}{20} =$

25.
$$-2 \le \sin x - \sqrt{3} \cos x \le 2 \quad \Rightarrow \ -1 \le \sin x - \sqrt{3} \cos x + 1 \le 3$$

$$\Rightarrow \text{ range of } f(x) \text{ is } [-1, 3].$$
 Hence S is $[-1, 3]$.

26. If
$$y = f(x)$$
 is symmetric about the line $x = 2$ then $f(2 + x) = f(2 - x)$.

27.
$$9-x^2 > 0$$
 and $-1 \le x - 3 \le 1 \implies x \in [2, 3)$

$$28. \qquad \lim_{x\to\infty} \left(1+\frac{a}{x}+\frac{b}{x^2}\right)^{2x} = \lim_{x\to\infty} \left(1+\frac{a}{x}+\frac{b}{x^2}\right)^{\left(\frac{1}{\frac{a}{x}+\frac{b}{x^2}}\right)\times 2x\times \left(\frac{a}{x}+\frac{b}{x^2}\right)} = e^{2a} \implies a=1,\ b\in R$$

29.
$$f(x) = \frac{1 - \tan x}{4x - \pi} \implies \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = -\frac{1}{2}$$

30.
$$x = e^{y + e^{y + e^{y + \dots - \infty}}} \Rightarrow x = e^{y + x}$$

 $\Rightarrow \ln x - x = y \Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1 = \frac{1 - x}{x}$.

31. Any point be
$$\left(\frac{9}{2}t^2, 9t\right)$$
; differentiating $y^2 = 18x$

$$\Rightarrow \frac{dy}{dx} = \frac{9}{y} = \frac{1}{t} = 2 \text{ (given)} \Rightarrow t = \frac{1}{2}.$$

$$\Rightarrow \text{Point is } \left(\frac{9}{8}, \frac{9}{2}\right)$$

32.
$$f''(x) = 6(x - 1) \Rightarrow f'(x) = 3(x - 1)^2 + c$$

and $f'(2) = 3 \Rightarrow c = 0$
 $\Rightarrow f(x) = (x - 1)^3 + k$ and $f(2) = 1 \Rightarrow k = 0$
 $\Rightarrow f(x) = (x - 1)^3$.

33. Eliminating θ , we get $(x - a)^2 + y^2 = a^2$. Hence normal always pass through (a, 0).

34. Let
$$f'(x) = ax^2 + bx + c \Rightarrow f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx + d$$

$$\Rightarrow f(x) = \frac{1}{6} \left(2ax^3 + 3bx^2 + 6cx + 6d \right), \text{ Now } f(1) = f(0) = d, \text{ then according to Rolle's theorem}$$

$$\Rightarrow f'(x) = ax^2 + bx + c = 0 \text{ has at least one root in } (0, 1)$$

35.
$$\lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} = \int_{0}^{1} e^{x} dx = (e-1)$$

36. Put
$$x - \alpha = t$$

$$\Rightarrow \int \frac{\sin(\alpha + t)}{\sin t} dt = \sin \alpha \int \cot t dt + \cos \alpha \int dt$$

$$= \cos \alpha (x - \alpha) + \sin \alpha \ln |\sin t| + c$$

$$A = \cos \alpha, B = \sin \alpha$$

$$37. \qquad \int \frac{dx}{\cos x - \sin x} = \frac{1}{\sqrt{2}} \int \frac{1}{\cos \left(x + \frac{\pi}{4}\right)} dx = \frac{1}{\sqrt{2}} \int \sec \left(x + \frac{\pi}{4}\right) dx = \frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2} + \frac{3\pi}{8}\right)\right| + C$$

38.
$$\int_{-2}^{-1} \left(x^2 - 1 \right) dx + \int_{-1}^{1} \left(1 - x^2 \right) dx + \int_{1}^{3} \left(x^2 - 1 \right) dx = \frac{x^3}{3} - x \Big|_{-2}^{-1} + x - \frac{x^3}{3} \Big|_{-1}^{1} + \frac{x^3}{3} - x \Big|_{1}^{3} = \frac{28}{3}$$

39.
$$\int_{0}^{\frac{\pi}{2}} \frac{\left(\sin x + \cos x\right)^{2}}{\sqrt{\left(\sin x + \cos x\right)^{2}}} dx = \int_{0}^{\frac{\pi}{2}} \left(\sin x + \cos x\right) dx = \left|-\cos x + \sin x\right|_{0}^{\frac{\pi}{2}} = 2.$$

40. Let
$$I = \int_{0}^{\pi} xf(\sin x)dx = \int_{0}^{\pi} (\pi - x)f(\sin x)dx = \pi \int_{0}^{\pi} f(\sin x)dx - I$$
 (since $f(2a - x) = f(x)$)
$$\Rightarrow I = \pi \int_{0}^{\pi/2} f(\sin x)dx \Rightarrow A = \pi.$$

$$41. \qquad f(-a) + f(a) = 1$$

$$I_1 = \int_{f(-a)}^{f(a)} xg\{x(1-x)\}dx = \int_{f(-a)}^{f(a)} (1-x)g\{x(1-x)\}dx \qquad \left(\because \int_a^b f(x)dx = \int_a^b f(a+b-x)dx\right)$$

$$2I_1 = \int_{f(-a)}^{f(a)} g\{x(1-x)\}dx = I_2 \implies I_2 / I_1 = 2.$$

43.
$$2x + 2yy' - 2ay' = 0$$

$$a = \frac{x + yy'}{y'} \quad \text{(eliminating a)}$$

$$\Rightarrow (x^2 - y^2)y' = 2xy.$$

45.
$$y dx + x dy + x^2y dy = 0$$
.
$$\frac{d(xy)}{x^2y^2} + \frac{1}{y}dy = 0 \Rightarrow -\frac{1}{xy} + \log y = C$$
.

If C be (h, k) then centroid is (h/3, (k-2)/3) it lies on 2x + 3y = 1. 45. \Rightarrow locus is 2x + 3y = 9.

46.
$$\frac{x}{a} + \frac{y}{b} = 1$$
 where $a + b = -1$ and $\frac{4}{a} + \frac{3}{b} = 1$
 $\Rightarrow a = 2$, $b = -3$ or $a = -2$, $b = 1$.
Hence $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$.

47.
$$m_1 + m_2 = -\frac{2c}{7}$$
 and $m_1 m_2 = -\frac{1}{7}$
 $m_1 + m_2 = 4m_1m_2$ (given)
 $\Rightarrow c = 2$.

48.
$$m_1 + m_2 = \frac{1}{4c}$$
, $m_1 m_2 = \frac{6}{4c}$ and $m_1 = -\frac{3}{4}$.
Hence $c = -3$.

- 49. Let the circle be $x^2 + y^2 + 2gx + 2fy + c = 0 \Rightarrow c = 4$ and it passes through (a, b) $\Rightarrow a^2 + b^2 + 2ga + 2fb + 4 = 0$. Hence locus of the centre is $2ax + 2by (a^2 + b^2 + 4) = 0$.
- 50. Let the other end of diameter is (h, k) then equation of circle is (x-h)(x-p) + (y-k)(y-q) = 0Put y = 0, since x-axis touches the circle $\Rightarrow x^2 - (h+p)x + (hp+kq) = 0 \Rightarrow (h+p)^2 = 4(hp+kq)$ (D = 0) $\Rightarrow (x-p)^2 = 4qy$.
- 51. Intersection of given lines is the centre of the circle i.e. (1, -1) Circumference = $10\pi \Rightarrow$ radius r = 5 \Rightarrow equation of circle is $x^2 + y^2 2x + 2y 23 = 0$.
- 52. Points of intersection of line y = x with $x^2 + y^2 2x = 0$ are (0, 0) and (1, 1) hence equation of circle having end points of diameter (0, 0) and (1, 1) is $x^2 + y^2 x y = 0$.
- 53. Points of intersection of given parabolas are (0, 0) and (4a, 4a) \Rightarrow equation of line passing through these points is y = x On comparing this line with the given line 2bx + 3cy + 4d = 0, we get d = 0 and $2b + 3c = 0 \Rightarrow (2b + 3c)^2 + d^2 = 0$.
- 54. Equation of directrix is $x = a/e = 4 \Rightarrow a = 2$ $b^2 = a^2 (1 - e^2) \Rightarrow b^2 = 3$ Hence equation of ellipse is $3x^2 + 4y^2 = 12$.
- 55. I = $\cos \theta$, m = $\cos \theta$, n = $\cos \beta$ $\cos^2 \theta + \cos^2 \theta + \cos^2 \beta = 1 \Rightarrow 2 \cos^2 \theta = \sin^2 \beta = 3 \sin^2 \theta$ (given) $\cos^2 \theta = 3/5$.
- 56. Given planes are $2x + y + 2z 8 = 0, \ 4x + 2y + 4z + 5 = 0 \Rightarrow 2x + y + 2z + 5/2 = 0$ Distance between planes = $\frac{\mid d_1 d_2 \mid}{\sqrt{a^2 + b^2 + c^2}} = \frac{\mid -8 5/2 \mid}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{7}{2}.$

Any point on the line $\frac{x}{1} = \frac{y+a}{1} = \frac{z}{1} = t_1$ (say) is $(t_1, t_1 - a, t_1)$ and any point on the line 57. $\frac{x+a}{2} = \frac{y}{1} = \frac{z}{1} = t_2$ (say) is $(2t_2 - a, t_2, t_2)$.

Now direction cosine of the lines intersecting the above lines is proportional to $(2t_2 - a - t_1, t_2 - t_1 + a, t_2 - t_1).$

Hence $2t_2 - a - t_1 = 2k$, $t_2 - t_1 + a = k$ and $t_2 - t_1 = 2k$

On solving these, we get $t_1 = 3a$, $t_2 = a$.

Hence points are (3a, 2a, 3a) and (a, a, a).

- Given lines $\frac{x-1}{1} = \frac{y+3}{-\lambda} = \frac{z-1}{\lambda} = s$ and $\frac{x}{1/2} = \frac{y-1}{1} = \frac{z-2}{-1} = t$ are coplanar then plan 58. passing through these lines has normal perpendicular to these lines \Rightarrow a - b λ + c λ = 0 and $\frac{a}{2} + b - c = 0$ (where a, b, c are direction ratios of the normal to the plan) On solving, we get $\lambda = -2$.
- Required plane is $S_1 S_2 = 0$ where $S_1 = x^2 + y^2 + z^2 + 7x 2y z 13 = 0$ and $S_2 = x^2 + y^2 + z^2 3x + 3y + 4z 8 = 0$ 59. \Rightarrow 2x - y - z = 1.
- $(\vec{a} + 2\vec{b}) = t_1\vec{c}$ 60.(1) and $\vec{b} + 3\vec{c} = t_2 \vec{a}$(2) $(1) - 2 \times (2) \Rightarrow \vec{a} (1 + 2t_2) + \vec{c} (-t_1 - 6) = 0 \Rightarrow 1 + 2t_2 = 0 \Rightarrow t_2 = -1/2 \& t_1 = -6.$ Since a and c are non-collinear. Putting the value of t_1 and t_2 in (1) and (2), we get $\vec{a} + 2\vec{b} + 6\vec{c} = \vec{0}$.
- Work done by the forces \vec{F}_1 and \vec{F}_2 is $(\vec{F}_1 + \vec{F}_2) \cdot \vec{d}$, where \vec{d} is displacement 61. According to question $\vec{F}_1 + \vec{F}_2 = (4\hat{i} + \hat{j} - 3\hat{k}) + (3\hat{i} + \hat{j} - \hat{k}) = 7\hat{i} + 2\hat{j} - 4\hat{k}$ and $\vec{d} = (5\hat{i} + 4\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 4\hat{i} + 2\hat{j} - 2\hat{k}$. Hence $(\vec{F}_1 + \vec{F}_2) \cdot \vec{d}$ is 40.
- Condition for given three vectors to be coplanar is $\begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \end{vmatrix} = 0 \Rightarrow \lambda = 0, 1/2.$ 63.

Hence given vectors will be non coplanar for all real values of λ except 0, 1/2.

Projection of \overline{v} along \overline{u} and \overline{w} along \overline{u} is $\frac{\overline{v} \cdot \overline{u}}{|\overline{u}|}$ and $\frac{\overline{w} \cdot \overline{u}}{|\overline{u}|}$ respectively 63. According to question $\frac{\overline{v} \cdot \overline{u}}{|\overline{u}|} = \frac{\overline{w} \cdot \overline{u}}{|\overline{u}|} \Rightarrow \overline{v} \cdot \overline{u} = \overline{w} \cdot \overline{u}$. and $\overline{v} \cdot \overline{w} = 0$ $| \overline{u} - \overline{v} + \overline{w} |^2 = | \overline{u} |^2 + | \overline{v} |^2 + | \overline{w} |^2 - 2\overline{u} \cdot \overline{v} + 2\overline{u} \cdot \overline{w} - 2\overline{v} \cdot \overline{w} = 14 \Rightarrow | \overline{u} - \overline{v} + \overline{w} | = \sqrt{14}$.

64.
$$(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} \Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} = (\frac{1}{3} |\vec{b}| |\vec{c}| + (\vec{b} \cdot \vec{c})) \vec{a} \Rightarrow \vec{a} \cdot \vec{c} = 0 \text{ and } \frac{1}{3} |\vec{b}| |\vec{c}| + (\vec{b} \cdot \vec{c}) = 0$$

$$\Rightarrow |\vec{b}| |\vec{c}| (\frac{1}{3} + \cos \theta) = 0 \Rightarrow \cos \theta = -1/3 \Rightarrow \sin \theta = \frac{2\sqrt{2}}{3} .$$

- 65. Mode can be computed from histogram and median is dependent on the scale. Hence statement (a) and (b) are correct.
- $\begin{aligned} &\text{66.} & & x_i = a \;\; \text{for} \;\; i = 1, \, 2, \, \, , n \; \text{and} \;\; x_i = -a \;\; \text{for} \;\; i = n, \,, \, 2n \\ &\text{S.D.} = \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} \left(x_i \overline{x}\right)^2} \;\; \Rightarrow 2 = \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} x_i^2} \quad \left(\text{Since } \sum_{i=1}^{2n} x_i = 0 \right) \Rightarrow \; 2 = \sqrt{\frac{1}{2n} \cdot 2na^2} \;\; \Rightarrow \left| a \right| = 2 \end{aligned}$
- 67. E_1 : event denoting that A speaks truth E_2 : event denoting that B speaks truth Probability that both contradicts each other = $P(E_1 \cap \overline{E}_2) + P(\overline{E}_1 \cap E_2) = \frac{4}{5} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{3}{4} = \frac{7}{20}$

68.
$$P(E \cup F) = P(E) + P(F) - P(E \cap F) = 0.62 + 0.50 - 0.35 = 0.77$$

69. Given that n p = 4, n p q = 2
$$\Rightarrow$$
 q = 1/2 \Rightarrow p = 1/2 , n = 8 \Rightarrow p(x = 2) = $^8C_2\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^6 = \frac{28}{256}$

70. P + Q = 4, P² + Q² = 9
$$\Rightarrow$$
 P = $\left(2 + \frac{1}{2}\sqrt{2}\right)$ N and Q = $\left(2 - \frac{1}{2}\sqrt{2}\right)$ N.

71. F . 3 sin
$$\theta$$
 = 9
F . 4 cos θ = 16
 \Rightarrow F = 5.

72. By Lami's theorem $\vec{P} : \vec{Q} : \vec{R} = \sin\left(90^{\circ} + \frac{A}{2}\right) : \sin\left(90^{\circ} + \frac{B}{2}\right) : \sin\left(90^{\circ} + \frac{C}{2}\right)$ $\Rightarrow \cos\frac{A}{2} : \cos\frac{B}{2} : \cos\frac{C}{2}.$

Time T₁ from A to B = $\frac{12}{4}$ = 3 hrs. 73.

$$T_2$$
 from B to C = $\frac{5}{5}$ = 1 hrs.

Total time = 4 hrs.

Average speed =
$$\frac{17}{4}$$
 km/ hr.

Resultant average velocity = $\frac{13}{4}$ km/hr.

74. Component along OB =
$$\frac{\frac{1}{4}\sin 30^{\circ}}{\sin (45^{\circ} + 30^{\circ})} = \frac{1}{8} (\sqrt{6} - \sqrt{2})$$
 m/s.

75.
$$t_1 = \frac{2u\sin\alpha}{g}, t_2 = \frac{2u\sin\beta}{g} \text{ where } \alpha + \beta = 90^0$$
$$\therefore t_1^2 + t_2^2 = \frac{4u^2}{g^2}.$$